TECHNICAL DATA

FEATURES

* High sensitivity to alcohol and small sensitivity to Benzine .

- * Fast response and High sensitivity
- * Stable and long life
 - * Simple drive circuit

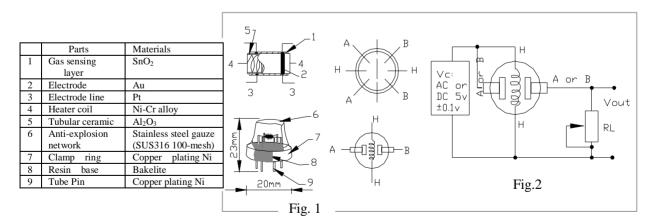
APPLICATION

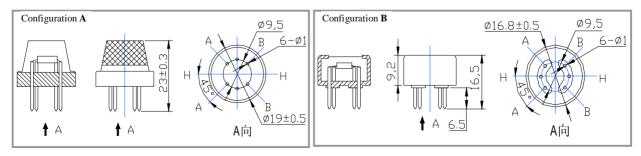
They are suitable for alcohol checker, Breathalyser.

SPECIFICATIONS

A. Standard work condition

		The device 1 and 1 dive	Description
Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
V _H	Heating voltage	5V±0.1	ACOR DC
R _L	Load resistance	200K Ω	
R _H	Heater resistance	$33 \Omega \pm 5\%$	Room Tem
P _H	Heating consumption	less than 750mw	


B. Environment condition


Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95% Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing Resistance	$1M \Omega - 8 M \Omega$ (0.4mg/L alcohol)	Detecting concentration scope:
			0.05mg/L-10mg/L
α (0.4/1 mg/L)	Concentration slope rate	$\leqslant 0.6$	Alcohol
Standard	Temp: $20^{\circ}C \pm 2^{\circ}C$	Vc:5V±0.1	
detecting condition	Humidity: 65%±5%	Vh: 5V±0.1	
Preheat time	Over 24 h	iour]

D. Structure and configuration, basic measuring circuit

Structure and configuration of MQ-3 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-3 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

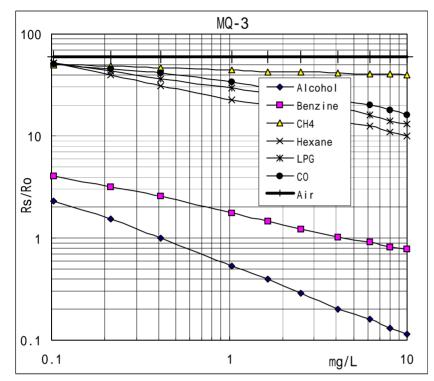


Fig.3 is shows the typical sensitivity characteristics of the MQ-3 for several gases. in their: Temp: $20^{\circ}C_{\times}$ Humidity: $65\%_{\times}$ O_2 concentration 21% RL= $200k^{\Omega}$ Ro: sensor resistance at 0.4mg/L of Alcohol in the clean air. Rs:sensor resistance at various concentrations of gases.

Fig.2 sensitivity characteristics of the MQ-3

Fig.4 is shows the typical dependence of the MQ-3 on temperature and humidity. Ro: sensor resistance at 0.4mg/L of Alcohol in air at 33% RH and 20 °C Rs: sensor resistance at 0.4mg/L of Alcohol at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-3 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 0.4mg/L (approximately 200ppm) of Alcohol concentration in air and use value of Load resistancethat(R_L) about 200 K Ω (100K Ω to 470 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

TECHNICAL DATA

MP-3 Flat Surfaced GAS SENSOR

MP-3 model with advanced planar construction is comprised of heater and metal oxide semiconductor material of subminiature Al_2O_3 ceramic plate, fetch out electrode down-lead, encapsulation in metal base and cap. When the target gas (Alcohol) exist, The sensor's conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, Convert change of conductivity to correspond output signal of gas concentration.

Features:

- *Full solid state semiconductor alcohol sensor
- * Lower voltage and consumption
- * Small size
- * Fast response and resume
- * Highest sensitivity
- * Excellent stability and long life
- * Easy circuit and big signal output
- * Excellent selectivity

Application

It is used for detecting whether the driver and other people who drink alcohol, or detecting whether ethanol steamy exist in other places.

Sensitivity

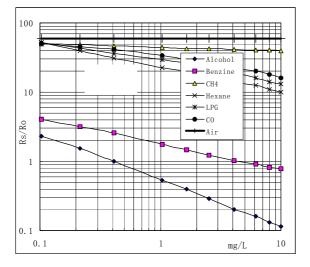
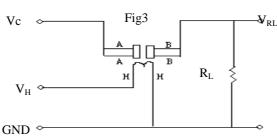



Fig.1 is the typical curve for sensor sensitivity The horizontal ordinate is gas concentration, the vertical is gas resistance ratio.(Rs/Ro) Ro: sensor resistance in the clean air. All the data got from the testing in the standard conditions. The sensitivity of smoke is got from burn 10pcs cigarettes in 8cbm space, its output correspond with 0.1mg/L alcohol.

BASIC CIRCUIT

Fig.3 shows the basic sensor. Two voltage sensor, heating voltage(Vc). VH is used temperature and Vc is

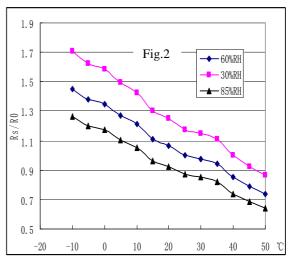


Fig.2 shows the typical dependence on temperature and humidity. The horizontal ordinate is test tempetature, the vertical is gas resistance ratio. (Rs/Ro).Rs is resistance in 0.4mg/L alcohol Tem./Hum.Ro is resistance 0.4mg/L alcohol.20 $^{\circ}$ C/65%RH.

MEASURING

measuring circuit of should be applied to this voltage(V_H) and circuit for suppling a certain used for testing the voltage(VRL) of load resistance(RL) that connect to the sensor in series. Due to the tight polarity of sensor, Vc should be used in DC. Also, Vc and VH could share one power supply circuit if it can meet the electronic characteristic of sensor. In order to make better use of sensor, a proper RL is very important.

SPECIFICATIONS: A Standard

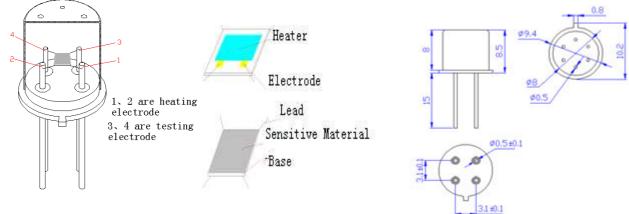
1...

Symbol	Parameter name	Technical condition	Remarks	
Vc	Circuit voltage	≤24V	DC	
$V_{\rm H}$	Heating voltage	2.5V±0.1V	AC or DC	
RL	Load resistance	adjustable		
R _H	Heater resistance	29Ω±3Ω	Room Tem.	
$P_{\rm H}$	Heating consumption	≤250mW		
B.Environment condition				
Symbol	Parameter name	Technical condition	Remark	
Tao	Using Temperature	-10°C -+ 50°C		
Tas	Storage Temperature	$-20^{\circ}\text{C} - +70^{\circ}\text{C}$		
R _H	Related humidity	less than 95% Rh		
R _H O ₂	Related humidity Oxygen concentration	less than 95% Rh 21% (standard condition)Oxyger concentration can affect sensitivi	$m_{1}m_{1}m_{1}m_{1}m_{2}m_{2}m_{2}m_{2}m_{2}m_{1}m_{2}m_{2}m_{2}m_{2}m_{2}m_{2}m_{2}m_{2$	
-	Oxygen concentration	21% (standard condition) Oxyger	$m_{1}m_{1}m_{1}m_{1}m_{2}m_{2}m_{2}m_{2}m_{2}m_{1}m_{2}m_{2}m_{2}m_{2}m_{2}m_{2}m_{2}m_{2$	

concentration

et beneret en a			
Symbol	Parameter name	Technical parameter	Ramark
Tres	Respond Time	≤5S(70% Response)	
Trec	Resume Time	≤30S(70% Response)	
Rs	Sensing Resistance	5KΩ-50KΩ(0.4mg/LAlcohol)	
α(R ₃₀₀ /R ₁₀₀ ppm Alcohol)	Concentration slope rate	≤0.6	Detecting concentration scope:
Standard working condition	Vc: 2.5V±0.1V Temp: 20℃±2℃	∀ _H : 2.5V±0.1V Humidity: 65%±5%	0.04—4mg/L Alcohol

Over 48 hour


Formula of sensitivity power consumption Ps: $Ps=Vc^2 \times Rs/(Rs+R_L)^2$

Formula of sensor resistance (Rs) : Rs=(Vc/V_{RL}-1)×R_L

B. Structure and configuration

condition Preheat time

Structure and configuration of MP-3 gas sensor is shown as Fig. 4, sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2), sensitive layer, measuring electrode and heater are fixed into a crust made by metal net. The heater provides necessary work conditions for sensitive components. The enveloped MP-4 have 4pins ,2 of them (3#, 4#) are used to fetch signals, and other 2 (1#, 2#) are used for providing heating current.

