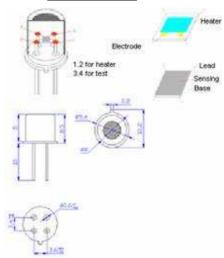
MP-4 Flat Surfaced Gas Sensor

Overview

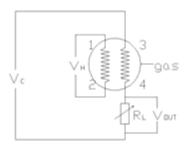
MP-4 flat surfaced sensor is used for flammable gas detection, which adopts advanced flat production technology. The heater and metal oxide semiconductor material on the ceramic substrate of subminiature Al_2O_3 are fetched out by electrode down-lead, encapsulated in metal socket and cap. When the target gas exists, the higher the concentration of target gas in the air, the higher conductivity of sensor is. Use simple electro circuit to convert the variation of conductivity to output signal corresponds to gas concentration.

Features

- * High selectivity
- * High sensitivity to Methane
- * Small size
- * 5V rated voltage, low consumption
- * Fast response and resume
- * Good stability and long life
- * Simple drive circuit


Application

Widely used for household harmful gas detection and automatic exhaust, living air device.


Performance parameters

Model			MP-4	
Туре			Semiconductor flat surfaced gas sensor	
Standar	d encapsulation	on	Metal	
Target gas			CH4, Natural gas	
Detection concentration		on	300-10000ppm(CH4,Natural gas)	
Standard circuit	Loop voltage	V _c	≤24V DC	
	Heating voltage	V_{H}	5.0V±0.2V ACorDC	
	Load resistance	R_{L}	Adjustable	
Standard	Heating resistance	R_{H}	85Ω±15Ω (Room Tem.)	
	Heating consumpti on	P _H	≤350mW	
features of sensor	Surface resistance	Rs	2KΩ-20KΩ(in 5000ppm CH4)	
	Sensitivity	S	Rs(in air)/Rs(5000ppmCH4)≥5	
	Concentra tion slope	α	≤0.6(R _{5000ppm} /R _{3000ppm} (R _{3000ppm})	
Standard	Temperature, humidity		20℃±2℃; 65%±5%RH	
condition	Standard testing		Vc:5.0V±0.1V;	
of test	circuit		V _H : 5.0V±0.1V	
	Warm-up time		More than 48 hours	

Configuration

Basic testing circuit

Calculation formula of sensor's consumption: $Ps=Vc^2 \times Rs/(Rs+R_L)^2$

Calculation formula of sensor's resistance: $Rs=(Vc/V_{RL}-1)\times R_L$

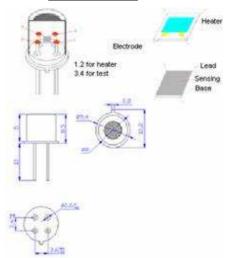
MP-5 Flat Surfaced Gas Sensor

Overview

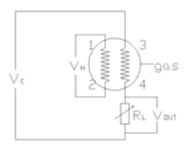
MP-5 flat surfaced sensor is used for flammable gas detection, which adopts advanced flat production technology. The heater and metal oxide semiconductor material on the ceramic substrate of subminiature Al_2O_3 are fetched out by electrode down-lead, encapsulated in metal socket and cap. When the target gas exists, the higher the concentration of target gas in the air, the higher conductivity of the sensor is. Use simple circuit to convert the variation of conductivity to output signal corresponds to gas concentration.

Features

- * High selectivity
- * High sensitivity to Methane
- * Small size
- * 5V rated voltage, low consumption
- * Fast response and resume
- * Good stability and long life
- * Simple drive circuit


Application

Widely used for household harmful gas detection and automatic exhaust, air fresher.

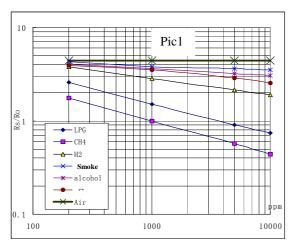

Performance parameters

Model			MP-5	
Туре			Semiconductor flat surfaced gas sensor	
Standard encapsulation		on	Metal	
Target gas			Natural gas, Methane	
Detection concentration		on	300-10000ppm(Natural gas, Methane)	
Standard circuit	Loop voltage	V _c	≤24V DC	
	Heating voltage	V _H	5.0V±0.1V AC or DC	
	Load resistance	R_L	Adjustable	
	Heating resistance	R _H	85Ω±15Ω (Room Tem.)	
Standard	Heating consumpti on	Рн	≤300mW	
features of sensor	Surface resistance	Rs	2KΩ-20KΩ (in 2000ppm Propane)	
	Sensitivity	S	Rs(in air)/Rs(5000ppm Propane)≥5	
	Concentra tion slope	α	≤0.6(R _{2000ppm} /R _{500ppm} Propane)	
Standard	Temperature, humidity		20℃±2℃; 65%±5%RH	
condition	Standard testing		Vc:5.0V±0.1V;	
of test	circuit		V _H : 5.0V±0.1V	
	Warm-up time		More than 48 hours	

Configuration

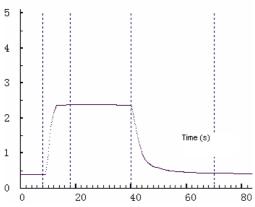
Basic testing circuit

Calculation formula of sensor's consumption: $Ps=Vc^2 \times Rs/(Rs+R_L)^2$


Calculation formula of sensor's resistance: $Rs=(Vc/V_{RL}-1)\times R_L$

Shock resistance

Vibration: frequency-1000 times/min, full swing-4mm, duration time-1 hour, vertical direction


Impact: acceleration-100G, vertical direction, repeat 5 times

Sensitivity features

Pic1: Rs means resistance of the sensor in different concentration of gas. Ro means resistance of the sensor in 2000ppm Propane. All the tests in the picture are and all finished under the standard testing condition.

Response and resume

Note

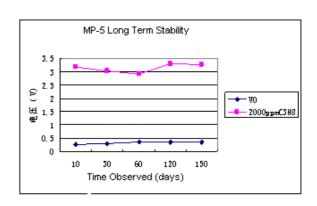
1 Following conditions must be avoided.

1.1 Exposed to organic silicon steam.

If organic silicon steam is adsorbed on the surface of sensor, sensitive material of sensor will be coated, which will restrain sensitivity of sensor and beyond retrieve. The sensor should avoid exposing to where existing of silicon adhesive, fixature, silicon latex, putty or other plastic additive contains silicon.

1.2 High corrosive gas environment

If the sensors exposed to high concentration corrosive gas (such as H_2S_7 , SO_X , CI_2 , HCl etc), it will not only result in corrosion of sensors structure, also it will make the sensitive materials changed irreversibly.


1.3 Alkali, Alkali metals salt, halogen pollution

Effects of temperature and humidity

Pic2: Rs means the resistance under 2000ppm Propane and various temperature and humidity conditions. Ro means the resistance under 2000ppm Propane 20°C/65%RH conditions.

Long-term stability

The sensors performance will lead to deterioration if sensors are sprayed polluted by alkali metals salt especially brine, or exposed to halogen such as fluorin.

1.4 Exposed to the water

The sensitivity of sensor will be reduced when spattered or dipped in water.

1.5 Freezing

If icing up on surface of sensor, it will lead sensitive material disintegrate then lose sensitivity.

1.6 Applied voltage overhigh

If applied voltage on sensors or heater higher than specified value, it will lead to wire lead and heater broken, and reduce its sensitivity, even if sensors have no physics damage.

2 Following conditions should be possibly avoided

2.1 Condensation water

Under indoor conditions, slight condensation water will effect performance of sensor lightly. However, if condensation water on the surface of sensor and keep a certain period, sensitivity of sensor will decrease.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if placed in high gas concentration for a long time, it will effect features of sensor.

2.3 Long time storage

If stored for long time without being electrified, the resistance of sensor produces reversible drift, which is related with storage conditions. Sensor should be stored in airproof without silicon gel bag with clean air. For the sensor with long time storage but no electrify, they need long aging time for stability before using.

2.4 Long time exposed to adverse environment

No matter the sensor electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the performance of sensor badly.

2.5 Vibration

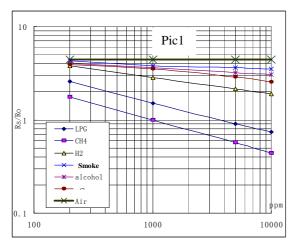
Continual vibration will result in sensor down-lead resonance then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

If sensors meet strong concussion, it may lead its lead wire disconnected.

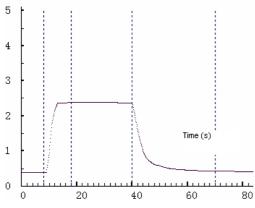
2.7 Usage

For sensors, handmade wielding is optional way. If use wave crest wielding should meet the following conditions:


- 2.7.1 Soldering flux: rosin soldering flux contains least chlorine.
- 2.7.2 Speed: 1-2 Meter/Minute
- 2.7.3 Warm-up temperature: 100±20 $^{\circ}\mathrm{C}$
- 2.7.4 Welding temperature: 250±10 °C
- 2.7.5 A single pass wave crest welding machine

Sensitivity of the sensor will be reduced If disobey the above using terms.

Shock resistance

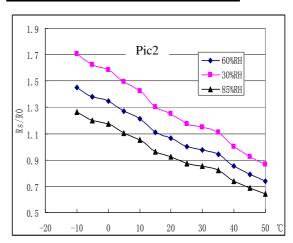

Vibration: frequency-1000 times/min, full swing-4mm, duration time-1 hour, vertical direction Impact: acceleration-100G, vertical direction, repeat 5 times

Sensitivity features

Pic1: Rs expresses the resistance of sensor in different concentration of gas. Ro expresses the resistance of sensor in 1000ppm CH4. All the tests in the picture are all finished under the standard testing condition.

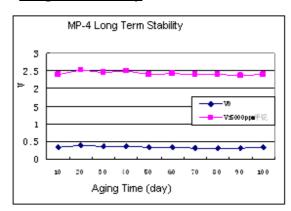
Response and resume

Note


- 1 Following conditions must be avoided.
- 1.1 Exposed to organic silicon steam.

If organic silicon steam is adsorbed on the surface of sensor, sensitive material of sensor will be coated, which will restrain sensitivity of sensor and beyond retrieve. The sensor should avoid exposing to where existing of silicon adhesive, fixature, silicon latex, putty or other plastic additive contains silicon.

1.2 High corrosive gas environment


If the sensors exposed to high concentration corrosive gas (such as H_2S_7 , SO_X , CI_2 , HCl etc), it will not only result in corrosion of sensors structure, also it will make the sensitive materials changed irreversibly.

Effects of temperature and humidity

Pic2: Rs expresses the resistance under 1000ppmCH4 and various temperature and humidity conditions. Ro expressed the resistance under 1000ppmCH4 and 20℃/65%RH conditions.

Long-term stability

1.3 Alkali, Alkali metals salt, halogen pollution

The sensors performance will lead to deterioration if sensors are sprayed polluted by alkali metals salt especially brine, or exposed to halogen such as fluorin.

1.4 Exposed to the water

The sensitivity of sensor will be reduced when spattered or dipped in water.

1.5 Freezing

If icing up on surface of sensor, it will lead sensitive material disintegrate then lose sensitivity.

1.6 Applied voltage overhigh

If applied voltage on sensors or heater higher than specified value, it will lead to wire lead and heater broken, and reduce its sensitivity, even if sensors have no physics damage.

2 Following conditions should be possibly avoided

2.1 Condensation water

Under indoor conditions, slight condensation water will effect performance of sensor lightly. However, if condensation water on the surface of sensor and keep a certain period, sensitivity of sensor will decrease.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if placed in high gas concentration for a long time, it will effect features of sensor.

2.3 Long time storage

If stored for long time without being electrified, the resistance of sensor produces reversible drift, which is related with storage conditions. Sensor should be stored in airproof without silicon gel bag with clean air. For the sensor with long time storage but no electrify, they need long aging time for stability before using.

2.4 Long time exposed to adverse environment

No matter the sensor electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the performance of sensor badly.

2.5 Vibration

Continual vibration will result in sensor down-lead resonance then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage

For sensors, handmade wielding is optional way. If use wave crest wielding should meet the following conditions:

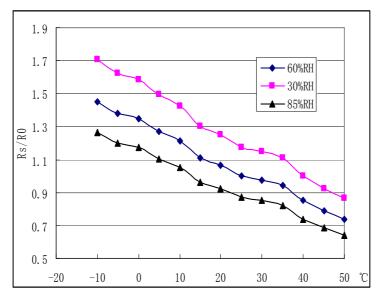
- 2.7.1 Soldering flux: rosin soldering flux contains least chlorine.
- 2.7.2 Speed: 1-2 Meter/Minute
- 2.7.3 Warm-up temperature: 100±20℃2.7.4 Welding temperature: 250±10℃
- 2.7.5 A single pass wave crest welding machine

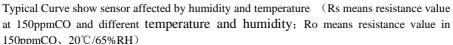
If disobey the above using terms, the sensitivity of sensor will be reduced.

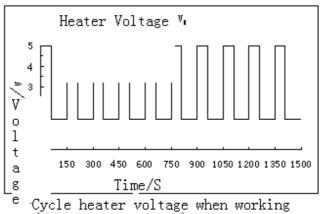
TECHNICAL DATA

MP-7 Flat Surfaced GAS SENSOR

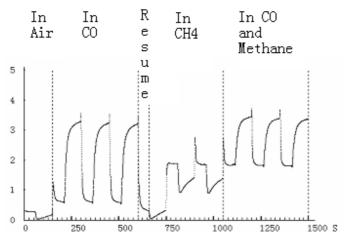
MP-7 adopt advanced planar construction production technics, using MOS material formed by micro AL2O3 ceramic tube and heater, electro-down-lead be fetched out, and are fixed into a metal base and cover. Adopting low and high temperature circling detection: when low temperature (VH=1.5V), it detects CO, Conductance of sensor bigger along with CO concentration in air; When high temperature (VH=5.0V), clean other gases, using simple circuit could change the conductance, change it to be output signal which relatively to the gas concentration.

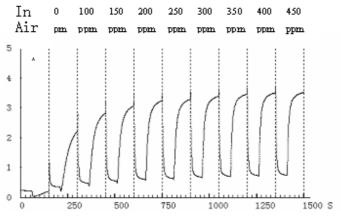

Character


- * High Sensitivity to CO
- * Mini Size
- *1.5V/5V changeable voltage, low power consumption
- * Fast response and resume character
- * Excellent Stability and long life


- * They are used in gas leakage detecting equipments in family, industry and commercial field , fire resistance/ safety detection system.
 - * CO gas leakage alarm and detector

SENSITIVITY CHARACTERISTICS





Cycle heater voltage when working (Test voltage is 5V)

Output signal for gas sensor in 150ppm CO and 5000ppm CH4 (Remark: Test data for typical sensor)

Output signal for gas sensor within different CO concentration (Remark: Test data for typical sensor)

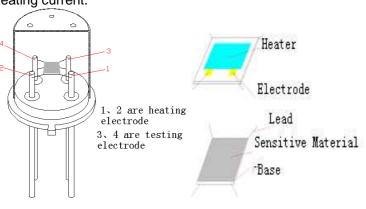
Vc	Circuit voltage	≤24V	DC
V _H	Heating voltage	1.5V±0.2V /5.0V±0.2V	AC or DC
R_L	Load resistance	adjustable	
R _H	Heater resistance	90Ω±10Ω	Room Tem.
P _H	Heating consumption	≤250mW	

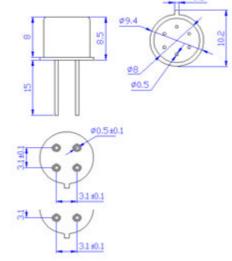
B. Environment condition

Symbol	Parameter name	Technical condition	Remark
Tao	Using Temperature	-10°C−+50°C	
Tas	Storage Temperature	-20℃−+70℃	
R _H	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	
		concentration can affect	minimum value >2%
		sensitivity	

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Ramark
Rs	Sensing Resistance	0.5KΩ-10KΩ (150ppm CO)	
α	Concentration slope rate	≤0.6	Detecting concentration scope: 10-500ppm CO
Standard working condition	Vc:5.0V±0.2V Temp: 20°C±2°C	V _H : 1.5V±0.2V /5.0V±0.2V Humidity: 65%±5%	10 300ррш 00
Preheat time	Over 4		


Formula of sensitivity power consumption: $Ps=Vc^2xRs/(Rs+R_L)^2$


Formula of sensor resistance: Rs= $(Vc/V_{RL}-1)\times R_L$

D. Structure and configuration

Structure and configuration of MP-7 gas sensor is shown as Fig. 4, sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2), sensitive layer, measuring electrode and heater are fixed into a crust made by metal net. The heater provides necessary work conditions for sensitive components.

The enveloped MP-7 have 4pins, 2 of them (3#, 4#) are used to fetch signals, and other 2 (1#, 2#) are used for providing heating current.

