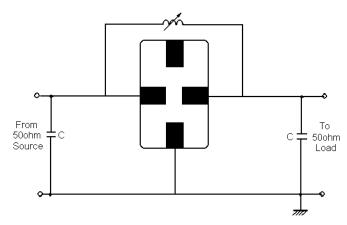
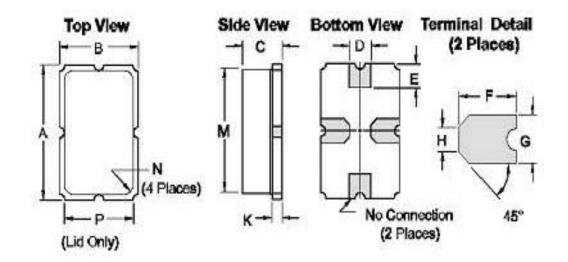
1. SCOPE

This specification shall cover the characteristics of 1-port SAW resonator with used for remote-control security.

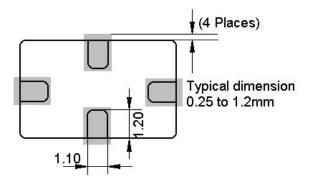

2. ELECTRICAL SPECIFICATION

DC Voltage VDC	10V		
AC Voltage Vpp	10V50Hz/60Hz		
Operation temperature	-20 to +85		
Storage temperature	-45 to +85		
RF Power Dissipation	0dBm		

Electronic Characteristics


Item		Unites	Minimun	Typical	Maximum
Center	• Frequency	MHz	314.925	315.000	315.075
Inserti	on Loss	dB		1.5	2.5
Quality	Factor Unload Q			12,800	
4	50 Loaded Q			2,000	
Temperature	Turnover Temperatu	re	10	25	40
Stability	Turnover Frequency	KHz		fo	
	Freq.temp.Coefficient	ppm/	2	0.032	
Frequen	cy Aging	ppm/yr		<± 10	
DC. Insu	lation Resistance	М	1.0		
	Motional Resistance R1			18	26
RF Equivale	μH		86		
RLC Model	Motional Capacitance C1	pF		1.5	
Pin 1 to Pin	2 Staic Capacitance	pF	1.7	2.0	2.3
Transducer S	tatic Capacitance	pF		1.9	

3. TEST CIRCUIT


4. DIMENSION

4-1 Typical dimension(unit:mm)

Dimensions	Millin	neters	Inches		
Dimensions	Min	Max	Min	Max	
A		5.97		0.235	
В		3.94		0.155	
C		2.16	1	0.085	
D	0.94	1_10	0.037	0.043	
E	0.83	1.20	0.033	0.047	
F	1.16	1.53	0.046	0.060	
G	0.94	1.10	0.037	0.043	
н	0.43	0.59	0.017	0.023	
ĸ	0.43	0.59	0.17	0.023	
M		5.31		0.209	
N	0.38	0.64	0.015	0.025	
Р		3.28		0.129	

4-2 Typical circuit board land patter

5. ENVIRONMENTAL CHARACTERISTICS

5-1 Temperature cycling

Subject the device to a low temperature of -40 for 30 minutes. Following by a high temperature of +25 for 5 Minutes and a higher temperature of +85 for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the specifications in table 1.

5-2 Resistance to solder heat

Submerge the device terminals into the solder bath at 240 ± 5 for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in table 1.

5-3 Solderability

Submerge the device terminals into the solder bath at 245 ± 5 for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in table 1.

5-4 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1 m 3 times. the filter shall fulfill the specifications in table 1.

5-5 Vibration

Subject the device to the vibration for 2 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 hz. The filter shall fulfill the specifications in table 1.

6. REMARK

6.1 Static voltage

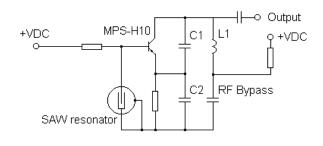
Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

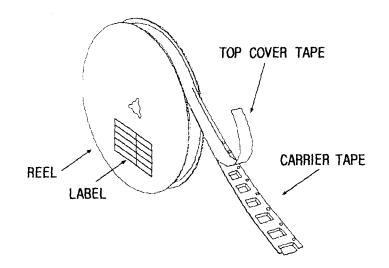
Only leads of component may be soldered. Please avoid soldering another


part of component.

7.Typical Application Circuit

Typical low-power Transmitter Application

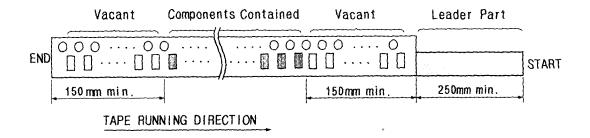
Typical Local Oscillator Application



8. Packing

- 8.1 Dimensions
 - (1) Carrier Tape: Figure 1
 - (2) Reel: Figure 2
 - (3) The product shall be packed properly not to be damaged during transportation and storage.
- 8.2 Reeling Quantity

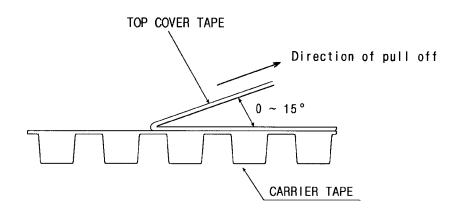
3000 pcs/reel (13")or 1000pcs/reel(7").


- 8.3 Taping Structure
 - (1) The tape shall be wound around the reel in the direction shown below.

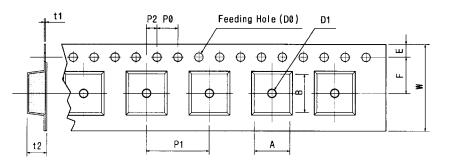
(2) Label

Device Name	
User Product Name	
Quantity	
Lot No.	

(3) Leader part and vacant position specifications.

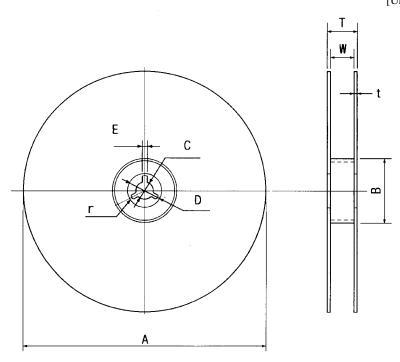


9. TAPE SPECIFICATIONS


9.1 Tensile Strength of Carrier Tape: 4.4N/mm width

9.2 Top Cover Tape Adhesion (See the below figure)

- (1) pull off angle: 0~150
- (2) speed: 300mm/min.
- (3) force: 20~70g


[Figure 1] Carrier Tape Dimensions

Tape Running Direction

									ח	Unit:mm]	
W	F	Е	P0	P1	P2	D0	D1	t1	t2	А	В
12.0 ±	5.5	1.75 ±	4.0	8.0	2.0	Ø1.5 ±	Ø1.0	0.3	2.10 ±	6.40 ±	5.20 ±
0.3	± 0.05	0.1	± 0.1	± 0.1	± 0.05	0.1	± 0.25	± 0.05	0.1	0.1	0.1

[Figure 2]

Α	В	С	D	Е	W	t	r
?330	?100	?13	?21	2	13	3	1.0
± 1.0	±0.5	±0.5	±0.8	±0.5	±0.3	max.	max.

[Unit:mm]