Polymer PTC Resettable Fuse For Battery Protection

LN Series

Features

- Lower power consumption by lower resistance
- The miniaturized PTC elements leads a flexible design around battery
- Typical used for protection of Li-ion /Polymer Li-ion battery
- ♦ Lead-free
- ♦ Agency recognition: UL、CSA、TUV

Product Dimensions

chip size: 3*4mm

Part number	Α		В		С		D		E	
	Min	Max	Min	Мах	Min	Max	Min	Max	Min	Max
LN190	9.7	10.3	2.96	3.26	0.7	1.1	2.2	2.4	1.8	2.8
LN250	9.7	10.3	2.96	3.26	0.7	1.1	2.2	2.4	1.8	2.8
LN350	9.7	10.3	2.96	3.26	0.7	1.1	2.2	2.4	1.8	2.8
LN370	9.7	10.3	2.96	3.26	0.7	1.1	2.2	2.4	1.8	2.8

Thermal Derating Chart-IH(A)

Part	Maximum ambient operating temperatures(℃)										
Number	-40	-20	0	20	25	40	50	60	70	80	
LN190	3.2	2.8	2.4	2.0	1.9	1.6	1.4	1.2	1.0	0.8	
LN250	4.2	3.7	3.2	2.6	2.5	2.1	1.8	1.6	1.3	1.0	
LN350	6.0	5.2	4.4	3.6	3.5	2.8	2.4	2.0	1.6	1.2	
LN370	6.2	5.4	4.6	3.8	3.7	3.0	2.6	2.2	1.8	1.4	

Electrical Characteristic

	lμ	Ι _Τ	V _{max}	I _{max}	$P_{d max}$	T _{trip}		R _{min}	R _{max}	R _{1max}
Part number	(A)	(A)	(V)	(A)	(W)	Current	Time	(Ω)	(Ω)	(0)
		(A)		(A)		(A)	(S)			(52)
LN190	1.9	4.9	6	50	1.0	9.5	2.0	0.007	0.014	0.024
LN250	2.5	8.0	6	50	1.3	12.5	2.0	0.006	0.012	0.020
LN350	3.5	9.0	6	50	1.3	17.5	5.0	0.004	0.010	0.016
LN370	3.7	9.2	6	50	1.3	18.5	5.0	0.003	0.008	0.015

Test Procedures And Requirements

Test	Test Conditions	Accept/Reject Criteria
Resistance	In still air @ 25°C	$R_{min} \leqslant R \leqslant R_{max}$
Time to Trip	Specified current, V _{max} , 25°C	T≤maximum Time to Trip
Hold Current	30min, at I _H	No trip
Trip Cycle Life	V _{max} , I _{max} , 100cycles	No arcing or burning
Trip Endurance	V _{max} , 24hours	No arcing or burning

Physical Characteristics and Environmental Specifications

Physical Characteristics							
Lead material	0.10mm nominal thickness,1/2 H nicke	0.10mm nominal thickness,1/2 H nickel					
Coating material	Epoxy resin						
Environmental Specification	s						
Test	Conditions	Resistance Change					
Bassive aging	-40℃,1000hours	≤ R _{1max}					
Fassive aging	70 ℃, 1000 hours						
Humidity aging	60℃/95% RH,1000hours	≤ R _{1max}					
Vibration	MIL-STD-883D ,Method 2026	No change					

Electrical Specifications:

 $I_{H}\!\!=\!\!Hold$ current: maximum current at which the device will not trip at 25 $^\circ\!\!\mathbb{C}$ still air.

 $I_T\text{=}Trip$ current: minimum current at which the device will always trip at 25 $^\circ\!\!\mathrm{C}$ still air.

 V_{max} =Maximum voltage device can withstand without damage at rated current.

 I_{max} =Maximum fault current device can withstand without damage at rated voltage.

 T_{trip} =Maximum time to trip(s) at assigned current.

Pd _{max}=Maximum power dissipation: maximum power dissipated by the device when in state air environment.

 $R_{min} {=} Minimum$ device resistance at 25 $^\circ\! {\rm C}$ $\,$ prior to tripping.

 $R_{\text{max}}\text{=}Maximum$ device resistance at $25\,^\circ\!\mathrm{C}$ $\,$ prior to tripping.

R_{1max}=Maximum device resistance at 25 °C, of device one hour after being tripped the first time.

Packaging and Storage

Packaging

Bulk, 1000pcs per bag

Storage

The maximum ambient temperature shall not exceed 40° C. Storage temperatures higher than 40° C could result in the deformation of packaging materials. The maximum relative humidity recommended for storage is 70%. High humidity with high temperature can accelerate the oxidation of the solder plating on the termination and reduce the solderability of the components. Sealed plastic bags with desiccant shall be used to reduce the oxidation of the termination and shall only be opened prior to use. The products shall not be stored in areas where harmful gases containing sulfur or chlorine are present.