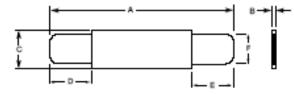
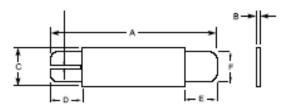
Polymer PTC Resettable Fuse For Battery Protection


LR Series

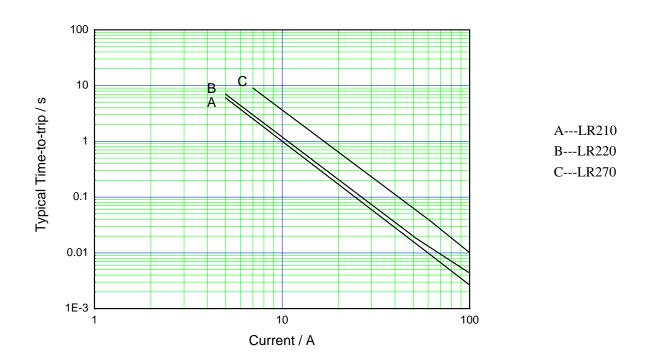
Features


- ♦ Strap devices, Axial leaded
- Protection for NiCd/NiMH rechargeable battery packs, Li-ion /Polymer Li-ion battery
- ♦ Available in lead-free version
- ♦ Agency recognition: UL、CSA、TUV

Product Dimensions

Standard style

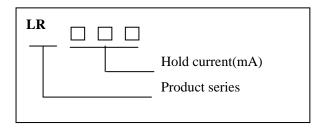
S-style

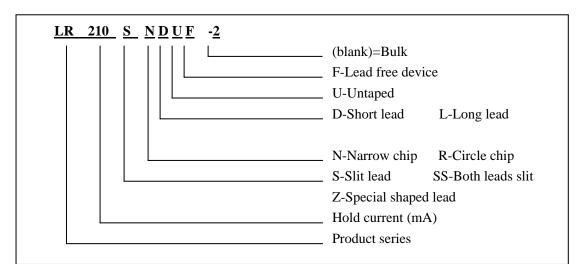

Unit: mm

Part number		4	I	3	(0	I	D	i	Ε	I	F
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
LR210	24.0	26.5	-	0.9	3.5	3.9	4.0	6.0	4.0	6.0	3.1	3.3
LR220	23.0	25.5	-	0.9	2.9	3.3	5.0	7.0	5.0	7.0	2.4	2.6
LR270	20.9	23.1	-	0.9	4.9	5.3	4.0	6.0	4.0	6.0	3.9	4.1

Thermal Derating Chart-IH(A)

Part				Maximum	ambien	t operatin	ig temper	atures(°C	C)		
number	-40	-20	0	20	25	40	50	60	70	80	85
LR210	4.3	3.6	2.9	2.31	2.1	1.6	1.3	1.0	0.6	0.3	0.1
LR220	4.5	3.8	3.0	2.45	2.2	1.7	1.4	1.1	0.7	0.3	0.1
LR270	5.6	4.7	4.0	3.05	2.7	2.2	1.7	1.4	0.9	0.4	0.1




Electrical Characteristic

	Ι _Η	Ι _Τ	V_{max}	I _{max}	P_{d}	I _{trip}	T _{trip}	R_{min}	R _{max}	R_{1max}
Part number	(4)	(4)	00	(4)	(W)	Current	Time	(0)	(0)	(Ω)
	(A)	(A)	(V)	(A)		(A)	(S)	(Ω)	(Ω)	(52)
LR210	2.1	5.0	16	60	0.8	10.5	5.0	0.018	0.030	0.060
LR220	2.2	5.3	16	60	0.8	11.0	5.0	0.017	0.029	0.058
LR270	2.7	6.5	16	60	1.2	13.5	5.0	0.010	0.018	0.036

Marking System

Part Numbering System

Test Procedures And Requirements

Test	Test Conditions	Accept/Reject Criteria
Resistance	In still air @ 25℃	$R_{min} \leqslant R \leqslant R_{max}$
Time to Trip	Specified current, V _{max} , 25 °C	T≤maximum Time to Trip
Hold Current	30min, at I _H	No trip
Trip Cycle Life	V _{max} , I _{max} , 100cycles	No arcing or burning
Trip Endurance	V _{max} , 24hours	No arcing or burning

Physical Characteristics and Environmental Specifications

Physical Characteristics

Lead material	0.125mm nominal thickness,quarter-ha	0.125mm nominal thickness,quarter-hard nickel					
Tape material	Polyester	Polyester					
ironmental Specification	15						
Test	Conditions	Resistance Change					
	-40°C,1000hours	±5%					
Passive aging	60℃,1000hours	±10%					
Humidity aging	60°C/95% RH,1000hours	±10%					
Vibration	MIL-STD-883D ,Method 2026	No change					

Electrical Specifications:

 I_{H} =Hold current: maximum current at which the device will not trip at 25 °C still air.

 $I_{T}\text{=}\text{Trip}$ current: minimum current at which the device will always trip at 25 $^\circ\!\!\mathrm{C}$ still air.

 V_{max} =Maximum voltage device can withstand without damage at rated current.

 $I_{\text{max}} = \text{Maximum}$ fault current device can withstand without damage at rated voltage.

T_{trip}=Maximum time to trip(s) at assigned current.

Pd=Typical power dissipation: typical amount of power dissipated by the device when in state air environment.

R_{min}=Minimum device resistance at 25°C prior to tripping.

R_{max}=Maximum device resistance at 25°C prior to tripping.

Packaging and Storage

Packaging

Bulk, 1000pcs per bag

Storage

The maximum ambient temperature shall not exceed 40°C. Storage temperatures higher than 40°C could result in the deformation of packaging materials. The maximum relative humidity recommended for storage is 70%. High humidity with high temperature can accelerate the oxidation of the solder plating on the termination and reduce the solderability of the components. Sealed plastic bags with desiccant shall be used to reduce the oxidation of the termination and shall only be opened prior to use. The products shall not be stored in areas where harmful gases containing sulfur or chlorine are present.

Warning:

PPTC devices are intended for protection against occasional over-current or over-temperature fault conditions, and should not be used when repeated fault conditions are anticipated. Operation beyond maximum ratings or improper use may result in device damage and possible electrical arcing and flame.

Notes:

The specification is intended to present application, product and technical data to assist the user in selecting PPTC circuit production devices. However, users should independently evaluate and test the suitability of each product. Wayon makes no warranties as to the accuracy or completeness of the information and disclaims any liability resulting from its use. Wayon's only obligations are those in the Wayon Standard Terms and Conditions of Sale and in no case will Wayon be liable for any incidental, indirect, or consequential damages arising from the sale, resale, or misuse of its products. Wayon reserves the right to change or update, without notice, any information contained in this specification.