

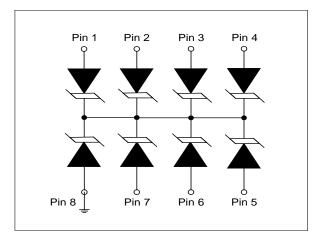
WS05-7MDA Thru WS24-7MDA

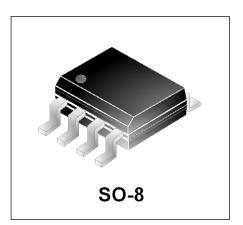
Transient Voltage Suppressor

Document: W0301045, Rev: A

Features

- Transient protection for data lines to
- Protects seven I/O lines
- Small SO-8 surface mount package
- Working voltages: 5V, 12V, 15V and 24V
- Low leakage current
- Low operating and clamping voltages
- Solid-state silicon avalanche technology

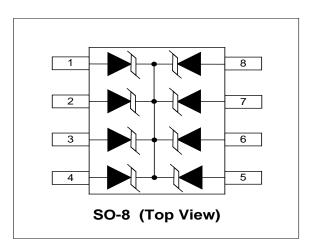

IEC COMPATIBILITY (EN61000-4)


- IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- IEC 61000-4-4 (EFT) 40A (5/50ns)
- IEC 61000-4-5 (Lightning) 12A (8/20µs)

Mechanical Characteristics

- JEDEC SO-8 package
- Molding compound flammability rating: UL 94V-0
- Marking: Part number, date code, logo
- Packaging:Tube or Tape and Reel per EIA 481
- RoHS Compliant

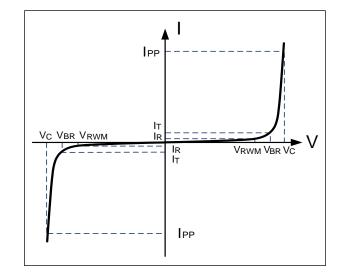
Circuit Diagram (Each Line Pair)



Applications

- RS-232 and RS-422 Data Lines
- LAN/WAN Equipment
- Notebooks, Desktops, and Servers
- Instrumentation
- Peripherals
- Set Top Box
- Serial and Parallel Port

Schematic & PIN Configuration



Silicontrol[™] Overvoltage Protection Products

Absolute Maximum Rating					
Rating	Symbol	Value	Units		
Peak Pulse Power ($t_p = 8/20 \mu s$)	Р _{РК}	300	Watts		
Lead Soldering Temperature	TL	260 (10 sec.)	°C		
Operating Temperature	TJ	-55 to + 125	°C		
Storage Temperature	T _{STG}	-55 to +150	°		

Electrical Parameters (T=25°C)

Symbol	Parameter			
Ірр	Maximum Reverse Peak Pulse Current			
Vc	Clamping Voltage @ IPP			
VRWM	Working Peak Reverse Voltage			
IR	Maximum Reverse Leakage Current @ VRWM			
Vbr	Breakdown Voltage @ I⊤			
Iτ	Test Current			
lF	Forward Current			
VF	Forward Voltage @ I⊧			

Electrical Characteristics

WS05-7MDA						
Parameter	Symbol	Conditions	Min	Typical	Мах	Units
Reverse Stand-Off Voltage	V _{RWM}				5.0	V
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	6.0			V
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			20	μA
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20µs			9.9	V
Maximum PeakPulse Current	I _{PP}	t _p =8/20μs			17	А
Junction Capacitance	Cj	Between I/O Pins and Ground V _R = 0V, f = 1MHz			350	pF

∠ Silicontrol[™] Overvoltage Protection Products

Electrical Characteristics(Cont.)

WS12-7MDA						
Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V _{RWM}				12	V
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	13.3			V
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			1	μA
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20μs			19	V
Maximum PeakPulse Current	I _{PP}	t _p =8/20μs			12	А
Junction Capacitance	Cj	Between I/O Pins and Ground V _R = 0V, f = 1MHz	Ground		120	pF
WS15-7MDA						
Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V _{RWM}				15	V
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	16.7			V
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			1	μA
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20μs			24	V
Maximum PeakPulse Current	I _{PP}	t _p =8/20μs			10	А
Junction Capacitance	Cj	Between I/O Pins and Ground V _R = 0V, f = 1MHz			75	pF
WS24-7MDA						
Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V _{RWM}				24	V
Reverse Breakdown Voltage	V _{BR}	I _T =1mA	26.7			V
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25°C			1	μA
Clamping Voltage	Vc	I _{PP} =1A, t _p =8/20µs			43	V
Maximum PeakPulse Current	I _{PP}	t _p =8/20µs			5	А
Junction Capacitance	Cj	Between I/O Pins and Ground V _R = 0V, f = 1MHz			50	pF

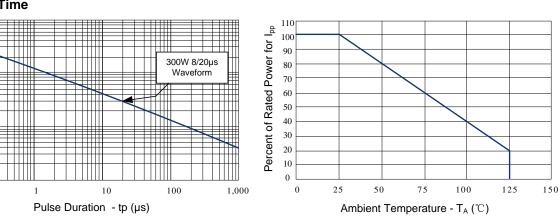
WSxx-7MDA

∐ Silicontrol[™] Overvoltage Protection Products

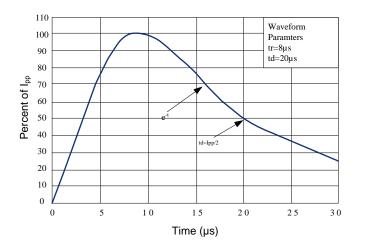
Typical Characteristics

10

1


0.1

0.01


0.1

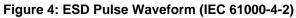

Peak Pulse Power - Ppk (KW)

Figure 1: Non Repetitive Peak Pulse Power vs. Pulse Time

Figure 3: Pulse Waveform

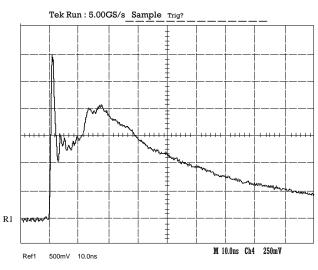
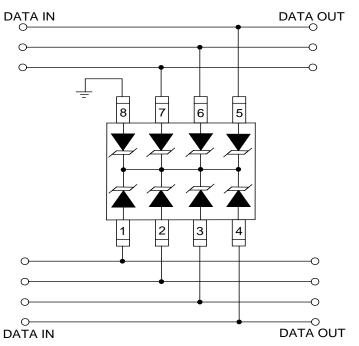


Figure 5: ESD Discharge Parameters Per IEC 61000-4-2

Figure 2: Power Derating Curve

Level	First Peak Current (A)	Peak Current at 30ns (A)	Peak Current at 60ns (A)	Test Voltage (Contact Discharge) (kV)	Test Voltage (Air Discharge) (kV)
1	7.5	4	8	2	2
2	15	8	4	4	4
3	22.5	12	6	6	8
4	30	16	8	8	15

Applications Information


Device Connection for Protection of Seven Data Lines

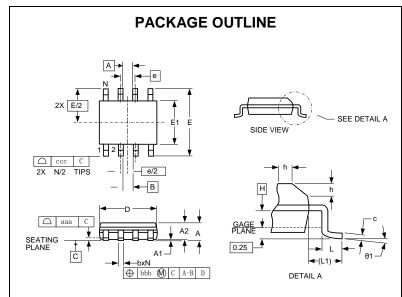
The Wxx-7MDA is designed to protect up to 7 data or I/O lines. They are bidirectional devices and may be used on lines where the signal polarities are above and below ground.

The Wxx-7MDA TVS arrays employ a monolithic structure. Therefore, the working voltage (V_{RWM}) and breakdown voltage (V_{BR}) specifications apply to the differential voltage between any two data line pins. For example, the W12-7MDA is designed for a maximum voltage excursion of ±6V between any two data lines.

The device is connected as follows:

Pins 1, 2, 3, 4, 5, 6 and 7 are connected to the lines that are to be protected. Pin 8 is connected to ground. The ground connections should be made directly to the ground plane for best results. The path length is kept as short as possible to reduce the effects of parasitic inductance in the board traces.

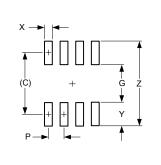
Connection Diagram


Circuit Board Layout Recommendations for Suppression of ESD.

Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended:

- Place the TVS near the input terminals or connectors to restrict transient coupling.
- Minimize the path length between the TVS and the protected line.
- Minimize all conductive loops including power and ground loops.
- The ESD transient return path to ground should be kept as short as possible.
- Never run critical signals near board edges.
- Use ground planes whenever possible.

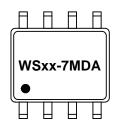
WSxx-7MDA


Outline Drawing – SO-8

JT ST							
			SO-8	3			
	I	0	DIMENSI	ONS			
DIM		INCHES	1	N	MILLIMETERS		
Dim	MIN	NOM	MAX	MIN	NOM	MAX	
А	.053	-	.069	1.35	-	1.75	
A1	.004	-	.010	0.10	-	0.25	
A2	.049	-	.065	1.25	-	1.65	
b	.012	-	.020	0.31	-	0.51	
С	.007	-	.010	0.17	-	0.25	
D	.189	.193	.197	4.80	4.90	5.00	
E1	.150	.154	.157	3.80	3.90	4.00	
Е	.236BSC			6.00BSC			
е		.050 BSC	;	1.27 BSC			
h	.010	-	.020	0.25	-	0.50	
L	.016	.028	.041	0.40	0.72	1.04	
θ1	0°	-	8°	0°	-	8°	
L1	(.041)			(1.04)			
Ν	8			8			
aaa	.004			0.10			
bbb	.010			0.25			
ссс	.008				0.20		

NOTES:

- 1. Controlling Dimensions Are In Millimeters (Angles In Degrees).
- 2. Datums And B- To Be Determined At Datum Plane H-.
- 3. Dimensions "E1" And "D" Do Not Include Mold Flash, Protrusions Or Gate Burrs.
- 4. Reference JEDEC STD MS-012, VARITION AA.


DIMENSIONS				
DIM	INCHES MILLIMETERS			
С	(.205)	(5.20)		
G	.118	3.00		
Р	.050	1.27		
х	.024	0.60		
Y	.087	2.20		
z	.291	7.40		

Notes

1.

This Land Pattern Is For Reference Purposes Only.Consult Your Manufacturing Group To Ensure Your Company's Manufacturing Guidelines Are Met.

Marking Codes

XX=Reverse Stand-Off Voltage

